Опубликовано 26.01.2018 по предмету Алгебра от Гость

Вычислить криволинейный интерграл от точки А до точки В по заданному пути интергированию и установисть независимость от пути интергрирования ∫(x-y)dx - (x-2y)dy ; АВ-дуга параболы у=1/2 *x^2 ;А(0;0) и B(4;8);

Ответ оставил Гость

Из уравнения y=x²/2 находим dy=x*dx. Тогда ∫(x-y)*dx-(x-2*y)*dy=∫((x-x²/2)-(x-x²))*dx=∫x²/2*dx с пределами интегрирования x1=0, x2=4. Первообразная F(x)=x³/6+C. Подставляя пределы интегрирования, находим F(4)-F(0)=4³/6-0³/6=64/6=32/3. Запишем теперь исходный интеграл в виде ∫P(x,y)*dx+Q(x,y)*dx, где P(x,y)=x-y, Q(x,y)=2*y-x. Так как dP/dy=-1=dQ/dx, то подынтегральное выражение является полным дифференциалом некоторой функции u(x,y). А в этом случае величина интеграла зависит только от начальной и конечной точек пути и не зависит от его формы.

Не нашел нужный ответ?

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы