Опубликовано 26.01.2018 по предмету Геометрия от Гость

Полностью решение, пожалуйста.
В нижнем основании цилиндра проведена хорда, которая видна из центра
этого основания под углом α. Отрезок, соединяющий центр верхнего
основания с одним из концов проведенной хорды, образует с плоскостью
основания угол β. Найдите площадь боковой поверхности цилиндра, если
расстояние от центра нижнего основания до проведенной хорды равно a.

Ответ оставил Гость

Хорда из центра нижней грани видна под углом α и расстояние до неё из центра равно a
r - радиус основания
a/2 / r = sin (α/2)
r = a/(2·sin(a/2))
Теперь рассмотрим осевое сечение цилиндра.
Из центра нижней грани в центр верхней грани - высота h, катет
радиус из конца хорды к центру нижней грани r - нижний катет
h/r = tg(β)
h = r·tg(β)
h = a·tg(β)/(2·sin(a/2))
Площадь боковой поверхности
S = 2πrh = 2πa/(2·sin(a/2))a·tg(β)/(2·sin(a/2)) = πa²/2·tg(β)/(sin(a/2))²

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы