Опубликовано 26.01.2018 по предмету Геометрия от Гость

При каком значении n векторы a{n +5 ;-8} и b { 5;1-n } коллинеарны
Пожалуйста

Ответ оставил Гость

Решение:
Составим уравнение по формуле x1/x2=y1/y2
n+5/5=-8/1-x
решим основываясь на свойстве пропорций  /frac{a}{b} = /frac{c}{d}     a*d=b*c.

 /frac{x+5}{5} = /frac{-8}{1-x}
5*-8=-40 тоесть (x+5)*(1-x)=-40

(x+5)*(1-x)=-40

(-x+1)*(x+5)=-40

(-x+1)*(x+5)+40=0 

(теперь вспомним правило умножения скобки на скобку)

(x*(-x+1)+5*(-x+1))+40=0 
x*1=x
x*-x=-x^2
5*-x=-5x
5*1=5

в результате приходим к вот такому уравнению
x^{2} +x-5x+5+40=0

упорядочиваем уравнение
x^{2} +x-5x+5+40=0
x-5x=-4x
5+40=45

 -x^{2} -4x+45=0

решаем получившиеся квадратное уравнение.
D = -4^2 - 4*-1*45 = 196
 /sqrt{D}=14
x_{1}=/frac{-4+14}{2*-1} = -9
x_{2}=/frac{-4-14}{2*-1} = 5

Ответ: Векторы колинеарны при значениях n 5 и -9.

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы