Опубликовано 26.01.2018 по предмету Математика от Гость

Вычислить несобственный интеграл или показать его сходимость и расходимость dx/x*ln^2 x

Ответ оставил Гость

 /int/limits^{ /frac{1}{e} }_0 { /frac{dx}{xln^2x} }  = /lim_{/mu /to +0}  /int/limits^{ /frac{1}{e} }_/mu { /frac{dx}{xln^2x} }  = /lim_{/mu /to +0}  /int/limits^{ /frac{1}{e} }_/mu { /frac{d(lnx)}{ln^2x} } =/lim_{/mu /to +0}(- /frac{1}{lnx} |^{ /frac{1}{e} }_/mu)= /lim_{/mu /to +0}(- /frac{1}{ln( /frac{1}{e} )}+/frac{1}{ln/mu})=/lim_{/mu /to +0}(- /frac{1}{-1} +/frac{1}{ln/mu})=/lim_{/mu /to +0}(1 +/frac{1}{ln/mu})=1+ /frac{1}{- /infty} =1+0=1

Не нашел нужный ответ?

Если ответ по предмету Математика отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы