Количество размещений из n по k - число, показывающее, сколькими способами можно составить упорядоченный набор k элементов из n различных элементов.
A= n!/(n-k)!
Найдем количество трехбуквенных слов, составленных из 5 букв без повторений.
A= 5!/(5-3)! = 3*4*5 =60
За буквой "A" следует двухбуквенное слово, составленное из 4 букв без повторений.
A= 4!/(4-2)! = 3*4 =12
Ответ: Из 5 букв без повторений можно составить 60 трехбуквенных слов. Из них 12 начинаются с буквы "A".
Если ответ по предмету Математика отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.