Б)
Для удобства пронумеруем монеты от 1до 12.
Первым взвешиванием сравним две группы по четыре монеты:1, 2, 3, 4 и 5, 6, 7,8.
Случай I: первое взвешивание показало равенство
Есливесы покажут равенство, то фальшивая монета находится среди оставшихся четырёхмонет. Тогда вторым взвешиванием мы сравним три монеты 9, 10,11 с заведомо настоящими 1, 2, 3.
Если и вэтот раз весы покажут равенство, то фальшивка - монета номер 12, итретьим взвешиванием мы сравним её с настоящей и узнаем, легче она или тяжелее.
Если же три монеты 9, 10, 11 оказались легче(тяжелее), то третьим взвешиванием сравним друг с другом монеты 9 и10. Если они равны, то монета 11 - фальшивая, и она легче(тяжелее) настоящей. Иначе заключаем, что из монет 9 и 10фальшивая та, которая легче (тяжелее) другой.
Случай II: первоевзвешивание показало неравенство
Теперь предположим, что первоевзвешивание показало, что монеты 1, 2, 3, 4 тяжелее,чем 5, 6, 7, 8. Случай, когда первые монетыоказались легче, симметричен.
Во втором взвешивании на одну чашу поместиммонеты 1, 2, 5, а на другую - монеты 3, 4,9 (монета 9 - заведомо настоящая).
Если второе взвешиваниепоказало равенство, то у нас остаются три монеты 6, 7, 8,одна и которых легче остальных. Третьим взвешиванием сравниваем монеты 6и 7. Если они равны, то монета 8 легче остальных. Иначе фальшивойявляется та, которая легче другой.
Теперь предположим, что во второмвзвешивании монеты 1, 2, 5 оказались тяжелее, чем 3,4, 9. Это означает, что фальшивка находится среди монет 1 и2, причём она тяжелее остальных. Сравнив в третьем взвешивании эти двемонеты друг с другом, мы определим фальшивую.
Предположим, что во второмвзвешивании монеты 1, 2, 5 оказались легче, чем 3,4, 9. Это означает, что либо монета 5 легче остальных, либоодна из монет 3 и 4 тяжелее остальных. Третьим взвешиванием мысравним друг с другом монеты 3 и 4 и найдём ответ.а) Если за 3 можно, то можно и за 4
Если ответ по предмету Математика отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.