Опубликовано 26.01.2018 по предмету Математика от Гость

В углах квадратного двора стоят четыре дома, в которых живут хулиганы, дружащие между собой. Начиная с 1 января 2017 года каждый день навсегда ссорились какие-то два хулигана из со- седних домов, а 1 января 2018 года впервые оказалось, что ссориться больше некому. Сколько могло быть всего хулиганов? Приведите все варианты и объясните, почему нет других

Ответ оставил Гость

Пусть A,B,C,D - количества хулиганов в домах (по порядку). Тогда вначале число пар друзей в соседних домах равно (A+C)(B+D). Если ссор между хулиганами из соседних домов не было, то это выражение должно быть равно 365 - числу дней в году. Так как сумма A+C+B+D равна 77, то мы знаем два условия на числа x=A+C и y=B+D: их произведение равно 365, а сумма 77. Но единственное разложение 365 на множители - это 5 на 73, и сумма множителей не равна 77. вроде так

Не нашел нужный ответ?

Если ответ по предмету Математика отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы