Пусть высота будет DH, а вершины правильного треугольника - A, B, C.
Рассмотрим один боковой треугольник ADB. Он у нас равносторонний, следовательно, углы при основании 45 градусов. Тогда выходит, что угол ADB = (180-45)/2=90. Т.к. треугольник ADB равнобедренный, то его высота DH это еще и медиана и биссектриса => угол ADH = угол ADB / 2 = 90 / 2 = 45. Рассмотрим треугольник ADH. Т.к. угол при основании треугольника ADB (угол HAD) = 45 градусов и угол ADH = 45, то треугольник ADH равнобедренный по углам при основании => AH = DH = 2 корень из 3. DH - это ведь одновременно и биссектриса и высота и медиана, так ведь? Тогда AB = 2 * AH = 2 * 2кореньиз3 = 4кореньиз3. Площадь треугольника равна половине произведения высоты DH на сторону AB => SADB = 2кореньиз3 * 4 кореньиз / 2 = 12. Так как все боковые треугольники равны, то площадь боковой поверхности пирамиды равна 3 * 12 = 36.
Конечно, это можно было решить иначе, но этот способ, как по мне, проще понять, да?
Если ответ по предмету Математика отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.