Опубликовано 26.01.2018 по предмету Алгебра от Гость

Помогите пожалуйста решить задачу:
Из поселка на станцию, расстояние между которыми 32 км, выехал велосипедист. Через 0,5 ч навстречу ему со станции выехал мотоциклист и встретил велосипедиста через 0,5 ч после своего выезда. Известно, что скорость мотоциклиста на 28 км/ч больше скорости велосипедиста. Найдите скорость каждого из них.

Ответ оставил Гость

Пусть х км/ч скорость велосипедиста, тогда (х+28) км/ч скорость мотоциклиста. Велосипедист до момента встречи был в пути 1 час (0,5 ч до выезда мотоцикдиста и еще 0,5 ч до встречи с ним), за это время он проехал: х * 1 км, мотоциклист проехал 0,5(х+28) км. По условию известно, что расстояние = 32 км, получаем уравнение:

х + 0,5(х + 28) = 32

х + 0,5х + 14 = 32

1,5х = 18

х = 12

12 км/ч скорость велосипедиста

12 + 28 = 40 км/ч скорость мотоциклиста. 

Не нашел нужный ответ?

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы